Dark Tridents @ Off-Axis Liquid Argon Neutrino Detectors

Yue Zhang
Fermilab & Northwestern

Workshop on Physics Opportunities in the Near DUNE Detector Hall, Dec 5, 2018

André de Gouvêa, Paddy Fox, Roni Harnik, Kevin Kelly, **YZ** (arXiv:1809.06388)

DUNE is a Multi-purpose Experiment

DUNE will be one of the largest particle physics experiments in the coming decade. New generation of v detectors.

Besides its day job: In the history, there has been a fascinating tradition for v detectors to discover unexpected signals.

Suggestion of this talk: let us try to get prepared for the unexpected. New dark matter signals from light weakly coupled dark sector theories.

Dark Matter at Neutrino Detectors

For non-relativistic halo dark matter, available recoil energy in the elastic scattering

$$E = \mu v^2 = 10^{-6} \mu \lesssim \text{a few hundred keV} < E_{\nu-\text{detector}}^{\text{th}}$$

Energy threshold of neutrino detectors: $E_{\nu-{\rm detector}}^{\rm th} \sim {\rm MeV}$.

A inspiring challenge. Design new low threshold detectors, or Consider new dark matter theories that offer larger E.

Dark Matter at Neutrino Detectors

For non-relativistic halo dark matter, available recoil energy in the elastic scattering

$$E = \mu v^2 = 10^{-6} \mu \lesssim \text{a few hundred keV} < E_{\nu-\text{detector}}^{\text{th}}$$

Energy threshold of neutrino detectors: $E_{\nu-{\rm detector}}^{\rm th} \sim {\rm MeV}$.

A inspiring challenge. Design new low threshold detectors, or Consider new dark matter theories that offer larger E.

Borexino as exception: $E_{\rm Borexino}^{\rm th} \sim 200$ keV, sensitive to DM velocities close to cutoff (halo), stronger annual modulation effects.

Eby, Fox, Harnik, Kribs (private communication)

Make Dark Matter More Energetic

Neutrino beam: v-philic dark matter carries away MET. [ND]

Jeffrey Berryman's talk de Gouvêa, Berryman, Kelly, **YZ** (1802.00009), Kelly, **YZ** (to appear)

- Create a dark matter beam striking on v-detector. [ND]

 Batell, Pospelov, Ritz (0906.5614)
- Boosting dark matter due to astrophysical origins. [FD]

Berger, Shin's talks Bringmann, Pospelov (1810.10543)

Self-Destructing Dark Matter. [FD]

Grossman, Harnik, Telem, YZ (1712.00455)

This Talk

• Create a dark matter beam striking on v-detector. [ND]

This Talk

• Create a dark matter beam striking on v-detector. [ND]

This Talk

- Create a dark matter beam striking on v-detector. [ND]
- I will present our new idea, and explain why it is important, based on existing LAr detectors, e.g. MicroBooNE.
- Many similar aspects apply to the DUNE near detector.

Benchmark Model

The dark analog of QED: massive dark photon A' portal to DM χ (fermion or scalar).

$$\mathcal{L}_{\rm int} = (\varepsilon e J_{\rm SM}^{\mu} + g_D \bar{\chi} \gamma^{\mu} \chi) \, A_{\mu}'$$
 strong limits from allowed to be sizable dark photon searches

Roadmap From Early Universe

Dark Matter Elastic Scattering

Light dark particles can be probed at neutrino experiments.

target
$$\tau^+ \rightarrow \mu^+ \nu_\mu$$
 $\tau^0, \eta, \dots \rightarrow \gamma A', A' \rightarrow \chi \bar{\chi}$ $\tau^- = 0$ $\tau^- = 0$

Same signal as neutrino neutral-current interaction (background here).

Flux ratio:
$$\frac{\Phi_{\chi}}{\Phi_{\nu}} \sim \varepsilon^2$$
 Scattering cross $\frac{\sigma_{\chi p}}{\sigma_{\nu p}} \sim \frac{\varepsilon^2 e^2 g_D^2 / M_{A'}^4}{g^4 / M_W^4}$

$$\chi$$
 scattering important if $\varepsilon \gtrsim \frac{M_{A'}}{\sqrt{q_D} M_W} \sim 10^{-3} \left(\frac{1}{q_D}\right)^{1/2} \left(\frac{M_{A'}}{100 \, \mathrm{MeV}}\right)$

Batell, Pospelov, Ritz (0906.5614)

Limits From MiniBooNE

$$\alpha_D = 0.5$$

$$M_{A'} = 3M_{\chi} > 2M_{\chi}$$

thermal freeze out channel

Beam dump mode run in 2012-13. Look for nuclear (electron) recoils.

MiniBooNE-DM Collaboration (1702.02688 & 1807.06137)

Complimentary Regions on the Roadmap

Almost all studies of elastic beam DM scattering have focused on the parameter space with $m_{A'} > 2m_{\chi}$ — on shell intermediate A'.

Complimentary Regions on the Roadmap

Almost all studies of elastic beam DM scattering have focused on the parameter space with $m_{A'} > 2m_{\chi}$ — on shell intermediate A'.

New Dark Matter Signals

Elastic scattering limited by large v background (SM NC interactions). New ways of probing the $m_{A'} < 2m_{\chi}$ regime?

Consider more rare processes (in view of neutrinos) that are triggered by dark matter.

Dark Tridents

Go beyond elastic scattering: consider A' radiations. A' (on-shell) has to decay back into SM. Take advantage of its visible decay.

Signal: charged-lepton pair creation.

$$\frac{\sigma_{\chi N \to \chi N + A'}}{\sigma_{\chi N \to \chi N}} \sim \frac{\alpha_D}{2\pi} \log \frac{Q^2}{M_{A'}^2}$$

Dark showers possible in the large α_D and large log limit.

Background

Neutrino trident production

Fake signals

$$\sigma_{\nu\text{-trident}} \sim 10^{-5} \sigma_{\rm NC}$$

Require good particle ID (LArTPC)

Perez-Gonzalez, Hostert's talks

Invariant mass cut: $m_{e+e-} = m_{A'}$ for all dark trident signal events.

Dark Matter Beam is Wider

Without a dedicated running in the beam dump mode, Off-axis detector sees a relatively higher dark matter/neutrino ratio.

de Gouvêa, Fox, Harnik, Kelly, YZ (1809.06388)

We Already Have Data On Tape

Since MicroBooNE began taking data in 2015, NuMI has delivered $\sim 10^{21}$ POT. v-related background events estimated to be $\sim O(10)$.

(without m_{e+e-} cut)

Dark Trident at MicroBooNE: Reaches

Better sensitivity using dark trident than elastic scattering.

CMB constraint does not apply to complex scalar, or ADM.

Dark Trident at MicroBooNE: Reaches

A positive discovery of ε away from the thermal targets could help differentiate DM production mechanisms.

A Closer Look: angular distributions

Interestingly, outgoing A' most likely to travel along beam direction, with nuclear recoil perpendicular to beam direction.

A Closer Look: angular distributions

This is a generic feature that applies to all mass ranges we explore.

Future Directions

Beyond trident: multiple dark photon radiations important for large $\alpha_D \sim O(1)$.

DUNE PRISM.

- Large decay angles: observe multiple charged-lepton pairs.
- Collimated lepton-jets: unlike LHC, created inside the detector, exotic tracks from dE/dx measurement.

Conclusion and Outlook

Well motivated and exciting opportunity for v experiments (e.g. DUNE) to probe the nature of dark matter.

Unlike neutrinos, plenty of new dark matter signals are allowed and to be tested, beyond elastic scattering — be open minded.

I discussed the dark trident signal: charged-lepton pair creation triggered by dark matter in v detectors. Low background.

More broadly speaking, a wide variety signatures: N,e recoils, Z'resonances, lepton jets, MET ... (c.f. new physics list @ LHC)

Conclusion and Outlook

Well motivated and exciting opportunity for v experiments (e.g. DUNE) to probe the nature of dark matter.

Unlike neutrinos, plenty of new dark matter signals are allowed and to be tested, beyond elastic scattering — be open minded.

I discussed the dark trident signal: charged-lepton pair creation triggered by dark matter in v detectors. Low background.

More broadly speaking, a wide variety signatures: N,e recoils, Z'resonances, lepton jets, MET ... (c.f. new physics list @ LHC)

thanks!